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Abstract

We consider the strategic interaction between two sellers facing demand of different customers

who are related by a one-sided externality: only the price of one seller affects the other seller’s

demand. Because of this externality, both sellers can gain by maximizing their joint profit and

sharing it. We assume that cooperation via joint profits maximization is possible only with an

exogenously given probability which, however, is varied systematically since we are interested

whether sellers would want to render it more likely, if this is possible. So we derive how prices

and expected profits of the sellers depend on the likelihood of cooperation as well as on the

systematically varied externality parameter. Whereas the expected profit of the monopolist

increases monotonically with the cooperation probability, the expected profits of the dependent

seller is surprisingly U-shaped: decreasing with more likely cooperation when its probability is

small and gaining with more likely cooperation when probability is large. So both sellers are

ex-ante better off only when the cooperation probability is high enough. If sellers can only slowly

move from independent pricing behavior to cooperation, for instance, to not trigger the attention

of the antitrust authority, they may not be able to get off the ground what would justify that

antitrust monitoring of one-sided dependent sellers is largely neglected.

1 Introduction

On markets with interdependent sellers, their obvious price externalities allow for gains from coop-

eration, for instance, in form of profitable cartelization. The literature has thoroughly investigated

such collusion, cartel stability, and the effectivity of antitrust interventions. In models of horizontally
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and vertically differentiated products, the analyses have highlighted the role of relevant features

of the economic environment, for instance, the degree of product differentiation, cost asymmetries

and demand volatility (for surveys see Feuerstein, 2005, and Marini, 2018). While initial studies

have focused on horizontal and vertical product differentiation separately, more recent papers have

extended the analysis to settings with both horizontal and vertical product differentiation, see for

instance Symeonidis (1999) and Sen et al. (2024).

We depart from these analyses of mutually interdependent sellers since we consider a one-sided

dependency of sellers whom we assume to collude with an exogenously given probability.1 In the

dyadic set with one independent and on dependent seller, the pricing of the independent seller affects

the demand, hence also the profits of the dependent seller, whereas the reverse does not hold. As an

example of a one-sided positive externality, consider the case of AI chatbots which supply services

(e.g., tailored ready-made codes with just few instructions) that increase the demand for scientific or

professional software packages. As an example of a one-sided negative externality, consider the case

of fashion goods like luxury or branded products, whose demand is, at least to some extent, by the

pricing of unbranded ones whereas the demand for the lower quality, unbranded products is likely

inversely affected by the price of the high quality ones. In these settings, collusion, while profitable,

may be hampered by the complexity of the communication and coordination tasks needed to sustain

it.2 Therefore, successful cartelization may be regarded as an uncertain outcome of the strategic

interaction among interdependent sellers, who will receive non-cooperative profits in case collusion

fails.

Specifically, we consider one-shot interactions of sellers which collude via competitive and

collusive prices, as in Nash (1953), i.e., in form of collusive pricing letting them share evenly the

surplus from cartelization, given by the difference between the maximal joint profit and the sum of

non-cooperation profits, but only with an exogenously given probability. What our analysis of such

a dyadic interaction shows is that the expected profits of the monopolist increases monotonically

with the cooperation probability, whereas the expected profits of the dependent seller evolve in a

U-shaped way, i.e., are lower (higher) for low (large) probabilities: both sellers are thus only better

off when the exogenous probability of sharing maximal joint profits is sufficiently large.3

Bargaining with variable threat is a familiar topic in bargaining theory ever since Nash (1953)

1Standard duopoly models with product differentiation mainly follow the seminal approach by Dixit (1979) and
consider two-sided dependency, i.e., markets in which both goods have a non-zero degree of substitutability.

2When it occurs at the expenses of consumers, cartelization may also be prevented by (possibly stochastic)
interventions of antitrust authorities.

3a me sembra che Werner qui dia per scontato che il conflict point per β = 0 sia uguale a quello per β = 1 e che
pertanto i profitti di equilibrio per β = 1 sono più alti per entrambi rispetto a quelli per β = 0. Cosa che invece non è
scontata.
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and its application to duopoly markets (Mayberry et al, sempre da verificare questa citazione).

Although it seems more natural and intuitive to let parties determine their disagreeemnt threats

after failing to achieve an agreement, Nash assumes commitment to threats before bargaining.

It is therefore not surprising that one has explored what happens instead when there is no such

precommitment power (e.g., Kaneko and Mao, 1996).

We do not confine ourselves to comparing bargaining with and without precommiting to threats.

Instead—like Ferstlman and Seidmann (1991), who render delayed agreements more costly, and

Muthoo (1992), who assumes preannounced threats to be possibly revocable, we focus also on

the generic intermediate cases when reaching an agreement and ending up in conflict where both

occur with positive probability. Actually we are mainly interested in whether one-sidedly related

sellers would be gradually increasing their cooperation probability since, with antitrust monitoring

drastically switching from competition of sellers to cooperation is likely noticed and prevented.

According to the literature and field evidence antitrust authorities seem to exclusively monitor

markets with mutually dependent sellers. Our market setting instead features two non-mutually

dependent sellers, one monopolist whose price affects the demand level of only one dependent seller.

Also in case of such one-sided dependency there can be large cooperation incentives whose, especially

in case of drastically switching from independent to cooperative pricing assumes exogenously given,

but continuously varying market cooperation probability. We capture cooperation as both sellers

equally sharing their cooperation surplus, i.e., the difference of joint profits cooperation minus the

sum of both sellers’ disagreement profits. Due to possible side payments cooperation can rely on joint

profit maximization by analyzing the whole hybrid game class of random cooperation probabilities

we can show an, in our view, quite surprising result: only the monopolist, but not the dependent

seller, is always gaining when the cooperation probability gradually increases. Actually, this might be

one reason why antitrust monitoring widely neglects market situations with non-mutually dependent

sellers: the dependent seller would experience losses from more likely cooperating and terminate

cooperation or, at least, prevent for their increases and thus more harms for customers.

The paper is organized as follows: Section 2 describes the stochastic cartelization setup. Section

3 describes and comments the best responses and equilibrium prices. In Section 4 we derive the

equilibrium profits and how they are affected by the probability of cartelization. Section 5 concludes.
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2 Stochastic cartelization

One independent seller, M , and one dependent seller, D, face the following (linear) demand functions:

xM (pM ) = γ − pM and xD(pM , pD) = (γ + αpM ) − pD,

in which, for i = M, D, xi and pi denote the demand for and the price of seller i, respectively.4

When α = 0, both sellers are independent monopolists, whereas when α ̸= 0 there are price spillover

effects: the demand for D increases or decreases with pM when α > 0 or α < 0, respectively.

If sellers behave non-cooperatively, they independently and simultaneously choose (pM , pD) to

maximize their own market profits, which, since we normalize production costs to zero, are equal to:

πM (pM ) = pM xM (pM ) and πD(pM , pD) = pDxD(pM , pD). (1)

Instead of behaving non-cooperatively, the sellers may form a cartel and agree to maximize

the joint profits and share equally the surplus. In this case, we do not rely on exogenous conflict

payoffs, but we assume that sellers non-cooperatively choose prices to be irrevocably used in case

cartelization fails. In the terminology of bargaining with variable threats (see Nash, 1953),5 the

non-cooperation prices determine the conflict profits which determines the surplus to be shared in

case cartelization occurs.

The maximal joint profits, denoted by ΣJ , are attained by choosing prices (pJ
M , pJ

D) equal to:6

pJ
M = pJ

D = γ/(2 − α), (2)

which lead to:7

ΣJ = πM (pJ
M ) + πD(pJ

M , pJ
D) = γ2/(2 − α). (3)

The surplus consists of the difference between the maximal joint profits and the conflict profits,

S(pM , pD) = ΣJ − πM (pM ) − πD(pM , pD).

If cartelization occurs, the sellers agree to a payoff equal to the own conflict profits plus half of

4To guarantee non-negative demand, pM is restricted to the interval [0, γ] and pD to the interval [0, γ + αpM ].
Furthermore, α is restricted to the interval [−1, 1] by assumption.

5The original Nash (1953) model with variable threats (see also van Damme, 1991, Ch. 7.8) has been extended to
more than two players by Kaneko and Mao (1996), while Bolt and Houba (1998) have considered an explicit dynamic
bargaining stage.

6See Appendix A.1
7See Appendix A.2
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the surplus. Therefore, in this case the profits of M and of D are equal to, respectively:

πM (pM ) +
(1

2

)
S(pM , pD) and πD(pM , pD) +

(1
2

)
S(pM , pD) (4)

As explained in the Introduction, we consider a hybrid model in which sellers cooperate with

an exogenously given probability β, with 0 ≤ β ≤ 1. In this context of stochastic cartelization,

the expected profits of the sellers depend on the possibility that cartelization occurs or not. If

cartelization fails, sellers receive their non-cooperative profits (see (1)), while they attain the

cooperative profits (see (4)) if cartelization succeeds. Taking the success or failure of cartelization

into account, the expected profits of M are equal to:

π̂M (pM , pD) = β

success︷ ︸︸ ︷[
πM (pM ) +

(1
2

)
S(pM , pD)

]
+(1 − β)

failure︷ ︸︸ ︷
πM (pM )

= πM (pM ) +
(

β

2

)
S(pM , pD)

=
(

β

2

)
ΣJ +

(
1 − β

2

)
πM (pM ) −

(
β

2

)
πD(pM , pD). (5)

while those of D are given by:

π̂D(pM , pD) = β

success︷ ︸︸ ︷[
πD(pM , pD) +

(1
2

)
S(pM , pD)

]
+(1 − β)

failure︷ ︸︸ ︷
πD(pM , pD)

= πD(pM , pD) +
(

β

2

)
S(pM , pD)

=
(

β

2

)
ΣJ +

(
1 − β

2

)
πD(pM , pD) −

(
β

2

)
πM (pM ). (6)

The second line in (5) and (6) shows that the expected profits can be expressed as the sum of the

conflict profits, which accrues to sellers with certainty, and of the expected value of the surplus,

whereas the third line shows that the expected profits depend on (pM , pD) via a weighted difference

between own and other’s non-cooperative profits, with weights equal to 1−β/2 and β/2, respectively,

which depend on the probability of the success of cartelization.
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3 Best responses and equilibrium prices

Given β and the other price, the sellers simultaneously chooses the own price to maximize the

expected profits. The best response p̂M (pD) of seller M and p̂D(pM ) of seller D statisfy the following

conditions, respectively:8

(
1 − β

2

)
∂πM (α, β)

∂pM
−
(

β

2

)
∂πD(α, β)

∂pM
= 0, (7)

∂πD(α, β)
∂pD

= 0, (8)

and therefore are given by:

p̂M (pD) = γ

2 − αβpD

2(2 − β) and p̂D(pM ) = γ

2 + αpM

2 . (9)

When β = 0, i.e., when cartelization fails, the best response of seller M does not depend on

pD because of the hypothesis of one-sided dependency. In this case, the profit maximizing price

of M is equal to γ/2 and the associated non-cooperative profits are γ2/4. When β > 0, i.e., when

cartelization is successful, the best response of seller M depends on β via the sign of α: for given

pD, when α is positive (negative) seller M reduces (increases) its price relative to γ/2, and this

effect is stronger when the likelyhood of successful cartelization is higher. This follows since seller

M aims to maximize (1 − β/2)πM (pM ) − (β/2)πD(pM , pD), given pD. To this end, (s)he chooses

pM to reduces the demand for, hence the profits of, seller D by exploiting the price spillover effects

which depend on the sign of α. However, when choosing pM ̸= γ/2, also the own profits of seller

M decrease (relative to γ2/4). The best response p̂M (pD) optimally trades off the reduction in

πM (pM ) for the reduction in πD(pM , pD), taking into account the likelyhood of cartelization via the

weights in (5).

The best response p̂D(pM ) of seller D, on the other hand, does not depend on β. This follows from

the hypothesis of one-sided dependency: seller D chooses pD to maximize (1−β/2)πD(pM , pD)− (β/

2)πM (pM ), given pM ; however, since πM does not depend on pD, this is the same as maximizing

πD(pM , pD).

Given (9), the equilibrium prices are equal to:9

pM (α, β) = γ [4 − (2 + α)β]
8 − (4 − α2)β and pD(α, β) = γ(2 + α)(2 − β)

8 − (4 − α2)β . (10)

8See Appendix B.1
9See Appendix B.2
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It is interesting to observe that one has:10

pM (α, β) − pD(α, β) = − 2α

8 − (4 − α2)β . (11)

Therefore, pM (α, β) > pD(α, β) when α < 0 and the opposite occurs when α > 0: consistently with

the effects of the externality, the equilibrium price of seller M is higher (lower) than the price of

seller D when there are negative (positive) price spillovers. Furthermore, for i = M, D one has:

pi(α, β) = pJ
i if α = 0, and pi(α, β) ̸= pJ

i otherwise. (12)

This follows since, when there are no price spillover effects, the maximization of expected profits is

equivalent to the maximization of the seller’s own profit regardless of the probability of successful

cartelization and, in turn, this is equivalent to the maximization of the aggregate profits of the

sellers.

Regarding how the equilibrium prices change with the probability of successful cartelization,

from (10) it follows that:11

∂pM (α, β)
∂β

= −4αγ(2 + α)
[8 − (4 − α2)β]2 (13)

∂pD(α, β)
∂β

= −2α2(2 + α)
[8 − (4 − α2)β]2 γ < 0 (14)

Hence, ∂pM (α, β)/∂β depends on α, it is negative when α > 0 and positive when α < 0. To get an

intuition for this result, observe that, when β increase, the weight on the negative component of the

expected profits, i.e., πD(pM , pD), increases (see (5)), while the weight on the positive component,

i.e., πM (pM ), decreases. Therefore, seller M adjusts pM to reduce πD(pM , pD) since this has a

greater positive effect on its expected profits than the associated negative effect due to the reduction

in πM (pM ), and the sign of the externality determines whether this implies an increase or a decrease

in pM . Regarding ∂pd(α, β)/∂β, it is negative regardless the sign of α. The intuition for this results

follows from the fact that, as β increases, seller M adjust pM to depress the demand of seller D,

who in turn reduces its price pD.

10See Appendix B.3
11See Appendix B.4
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4 Equilibrium profits

For i = M, D, let πi(α, β) denote the equilibrium conflict profits, i.e., the conflict profits evaluated at

the equilibrium prices, so that πM (α, β) = πM (pM (α, β)) and πD(α, β) = πD(pM (α, β), pD(α, β)).

Furthermore, let S(α, β) denotes the surplus evaluated at the equilibrium prices, i.e., S(α, β) =

ΣJ − πM (α, β) − πD(α, β). Given the equilibrium prices (10), one has:12

S(α, β) = (2 + α)(4α2γ2)
(2 − α)[8 − (4 − α2)β]2 . (15)

Therefore, S(α, β) > 0 for every β ∈ (0, 1) and all α ∈ (−1, 1), with α ̸= 0. The same conclusion

follows from (12) which, when α ̸= 0, implies ΣJ > πM (α, β) + πD(α, β) by a direct revealed

preference argument.

For i = M, D, let π̂∗
i (α, β) denote the expected profits of seller i evaluated at the equilibrium

prices, i.e.,

π̂∗
i (α, β) = πi(α, β) +

(
β

2

)
S(α, β) (16)

The equilibrium profits of seller M unambiguosly increase with the probability of successful carteliza-

tion; this follows since one has:13

∂π̂∗
M (α, β)
∂β

=
(1

2

)
S(α, β), (17)

which is positive due to S(α, β) > 0. This implies, in particular, that π̂∗
M (α, 1) > π̂∗

M (α, 0), so that

in the limit case of successful cartelization, i.e., β = 1, the profits of the (independent) seller M are

larger than in the limit case of conflict, i.e., β = 0.

Differently from what happen to seller M , and rather surpisingly, the equilibrium expected

profits of seller D do not monotically increase with the probability of successful cartelization. this

follows since one has:14

∂π̂∗
D(α, β)
∂β

=
(1

2

)
S(α, β) − (1 − β)∂S(α, β)

∂β
(18)

The sign of this derivative cannot be promptly ascertained, since the first term is positive and the

12See Appendix C.1
13See Appendix C.2
14See Appendix C.3

8



second is negative, due to:15

∂S(α, β)
∂β

> 0. (19)

However, the following proposition shows that, for β small enough, the second term is larger than

the first, so that the expected profits are descreasing, while the opposite occur for β large enough:

Proposition 1. For given α, the equilibrium expected profits of seller D are decreasing for β < β̄

and increasing for β > β̄, where

β̄ = 4(2 − α2)
3(4 − α2) ∈ (0, 1) (20)

Proof. See Appendix C.5. ■

Furthermore, the increase when β is large enough more than compensate the loss when β is small,

so that eventually also for seller D the profits in the limit case of successful cartelization, i.e., β = 1,

are higher than in the limit case of conflict, i.e., β = 0:16

π̂∗
D(α, 1) > π̂∗

D(α, 0). (21)

To get an intuition for the different reaction of expected profits to changes in β, from (16) one has:

∂π̂∗
i (α, β)
∂β

=
(1

2

)
S(α, β)︸ ︷︷ ︸

direct

+ ∂πi(α, β)
∂β

+
(

β

2

)
∂S(α, β)

∂β︸ ︷︷ ︸
indirect

. (22)

The total effect of the change of β is the sum of a direct effect when holding pM (α, β) and pD(α, β),

hence the surplus, constant, and an indirect effect which accounts for how conflict profits and surplus

change with β via the induced adjustment in pM (α, β) and pD(α, β). While the direct effect is equal

across sellers, the indirect effect differs between them: it is null for M (see (17)) and negative for D

(see (18)). To dig deeper into this difference, which accounts for the different reaction of expected

profits to changes in the likelyhood of cartelization, use (5) and (6) rewrite the indirect effects only

in terms of the conflict profits:

∂πM (α, β)
∂β

+
(

β

2

)
∂S(α, β)

∂β
=
(

1 − β

2

)
∂πM (α, β)

∂β
−
(

β

2

)
∂πD(α, β)

∂β
(23)

∂πD(α, β)
∂β

+
(

β

2

)
∂S(α, β)

∂β
=
(

1 − β

2

)
∂πD(α, β)

∂β
−
(

β

2

)
∂πM (α, β)

∂β
(24)

15See Appendix C.4
16See Appendix C.6
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Conflict profits change because of the adjustment in equilibrium prices, and therefore one has:

(
1 − β

2

)
∂πM (α, β)

∂β
−
(

β

2

)
∂πD(α, β)

∂β
=

(
1 − β

2

)
∂πM (α, β)

∂pM

∂pM

∂β
−
(

β

2

)
∂πD(α, β)

∂pM

∂pM

∂β︸ ︷︷ ︸
(7) ⇒ = 0

−
(

β

2

)
∂πD(α, β)

∂pD

∂pD

∂β︸ ︷︷ ︸
(8) ⇒ = 0

(25)

(
1 − β

2

)
∂πD(α, β)

∂β
−
(

β

2

)
∂πM (α, β)

∂β
=

(
1 − β

2

)
∂πD(α, β)

∂pM

∂pM

∂β
−
(

1 − β

2

)
∂πD(α, β)

∂pD

∂pD

∂β︸ ︷︷ ︸
(8) ⇒ = 0

−
(

β

2

)
∂πM (α, β)

∂pM

∂pM

∂β
(26)

Since changes are evaluated at the (interior) solution to the sellers’ own profits maximization

problem, the corresponding derivatives are equal to zero. Therefore, for seller M the (first order)

effect of the change in equilibrium prices is null because of the combined role of one-sided dependency,

which implies that the change in pD has no direct spillover on πM , and profit maximization, which

implies that (first order) effects from own prices on profits of both sellers are null. For seller D the

situation is different: while the (first order) effect of the change in pD is null because of the profit

maximization argument, the (first order) effect of the change in pM is not nullified and, as shown in

(18), is indeed equal to −(1 − β)∂S(α, β)/∂β.

In turn, this indirect effect is the weighted difference between the variation of own conflict profits

and conflict profits of the other seller with weights that reflects the probability of cartelization, i.e.,

(1 − β/2) for own conflict profits and (β/2) for the other one, respectively (see equations (23) and

(24)). Both conflict profits decrease as β increases,17 but the absolute value of the variation is higher

for D than for M for all β but for β = 1, when they are equal. Moreover, (1 − β/2) decreases with

β while (β/2) increases. For seller M , the weights offset the different magnitude in the change of

the conflict profits, so that the overall indirect effect is null. For D, instead, the absolute value of

variation of its conflict profits and the associated weight are higher than for M . Hence, the indirect

effect is negative but for β = 1, when both the variations of the conflict profits and the weights are

pairwise equal.

In the following, we rely on Figures 1–3 to further discuss our results. To illustrate the relationship

17See Appendix C.7.
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between the price of M and the expected profits of both sellers let us consider Figure 1 which focuses

on γ = 100, α = 0.9 (upper panel) and α = −0.9 (lower panel).18 On the x-axis we represent pM

while on the y-axis we report the profits in case cartelization fails and in case it succeeds, as well as

the equilibrium expected profits. Indeed, given pM , by considering the associated best response of

D (p̂D(pM )), we determine the conflict profits for M and D which are represented by the dashed

curves in green and brown, πM (pM ) and πD(pM , p̂D(pM )), respectively. The continuous violet line

represents the sum of the non-cooperative profits, its maximum (ΣJ) is attained when pM = pJ
M .

The continuous green and brown curves represent the profits in case cartelization succeeds for

M and D, πM (pM ) + S(pM , p̂D(pM ))/2 and πD(pM , p̂D(pM )) + S(pM , p̂D(pM ))/2, respectively. To

determine the equilibrium expected profits, for given β ∈ [0, 1], we consider the equilibrium prices

and represent the expected profits with green and brown circles for M and D, respectively, π̂∗
M (α, β)

and π̂∗
D(α, β). Since the expected profits are a convex combination of the conflict profits and the

profits in case cartelization succeeds, for a given pM (α = 100, β), they lie on the segments that

connects them. Before presenting the two subfigures, let us recall that, when α is positive then M

undercuts the price relative to γ/2 whereas for α < 0 the equilibrium price of M , pM (α, β), is larger

prices than γ/2.

In the upper panel (α = 0.9 and γ = 100), when β = 0 the equilibrium variables coincide with the

equilibrium non-cooperative ones, i.e., the equilibrium prices are pM (α = 100, β = 0) = 50(= γ/2)

and pD(α, β) = 72.5, the conflict profits are πM = 2500 and πD = 5256.25 which coincide with

the expected profits since cartelization never succeeds. As argued above when β increases, the

M -seller undercuts his price below the equilibrium non-cooperative one, by so doing both conflict

profits πM (α, β) and πD(α, β) decrease but as it is apparent from the figure the conflict profits of D

decreases more than the one of M and this allows M to seize a relevant part of the surplus. As β

increase, pM (α, β) decreases and the difference in the reduction of the conflicts profits shrinks. As

a result, while the expected profits of M increase with β, the one of D at first decrease and then

increase, reaching a maximum in β = 1.

In the lower panel (α = −0.9 and γ = 100) the conflict profits of D are decreasing in pM .

Hence, by marginally increasing its price above the market one, M can induce a reduction in both

conflict profits but triggers a higher decrease in the ones of D. As β increases, pM increases and the

difference in the variations of the two conflict payoffs is going to weaken. Therefore, also with a

negative α, the expected profits of M increase with β while the one of D at first decreases and then

increases, reaching a maximum in β = 1.

Figures 2–3 provide a representation of the profit-possibility frontier with and without side

18We consider |α| = 0.9 to have noticeable effects on the expected profits of the sellers.
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Figure 1: Equilibrium expected profits for γ = 100, α = −0.9 and different values of β.
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payments and of the equilibrium expected profits of the firm as β varies. We report on the x-axis

and y-axis the expected profits of M and D, respectively. Curve F represents the profit-possibility

frontier while FSP the profit-possibility frontier with side payments. For given β, Γβ denotes the

equilibrium conflict profits of the sellers. By considering a 45-degree segment that connects Γβ

and FSP , we can identify the profits in case cartelization succeeds, Cβ. Such a segment allows to

equally share the surplus for a given conflict point. Notice that, the equilibrium expected profits of

the sellers are convex combinations of the profits in case cartelization succeeds (Cβ) and in case

cartelization fails (Γβ) with weights equal to β and 1 − β, respectively. Hence, the equilibrium

expected profits, (π̂M (α, β), π̂D(α, β)), lie on the segment that connects Γβ and Cβ.

Figure 2 focuses on α = 0.9 γ = 100 and considers different values of β. In the diagram for

β = 0 (upper-left panel) the threat point Γ0 is the non-cooperative equilibrium with M choosing the

monopoly price and D optimally adjusting to it. If sellers would successfully cooperate, for which

the probability is β = 0, they would share the maximal joint profits as indicated by C0. In the

diagram for β = 0.5 (upper-right panel) the threat point Γ0.5 features lower threat profits for M and

D what allows M to gain more at the cost of D in case of cartelization. For β = 1 (lower-left panel)

the threat profits are even lower according to Γ1, but occur with probability 1 − β = 0. So Γ1 is the

threat point underlying the Nash (1953)-bargaining solution C1 in the profit space. Finally, the

diagram for β ∈ [−1, 1] (lower-right panel) shows that the equilibrium expected profits for M are

increasing in β while the expected profits for D are at first decreasing and then increasing, reaching

the maximum when β = 1.

Figure 3 replicates the same analysis but for γ = 100 and α = −0.9. A negative externality

(α < 0) reduces the market profits and the possible gains from cooperation relative to a positive

externality. From our results, we know that the qualitative pattern of the conflict and expected

profits does not depend on α. Indeed, conflict profits (Γβ) decrease for both sellers when β increases

from 0 to 1. Moreover, the expected profits of M are increasing in β while the ones of D exhibit a

u-shaped relationship reaching the maximum at β = 1.

5 Conclusions

As our example illustrates seller cooperation via exploiting customers is also possible when sellers

do not compete, but are only related by positive or negative externalities. In our economy with

one-sided dependency, this requires the monopolist M to undercut its price in case of a positive

externality, respectively by increasing the price above the monopoly level in case of a negative

externality.
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Figure 2: Equilibrium expected profits for γ = 100, α = 0.9 and different values of β.
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Figure 3: Equilibrium expected profits for γ = 100, α = −0.9 and different values of β.

0 500 1000 1500 2000 2500 3000

πM π̂M

0

500

1000

1500

2000

2500

3000

π
D

π̂
D

Γ0

C0

β=0

0 500 1000 1500 2000 2500 3000

πm π̂m

0

500

1000

1500

2000

2500

3000

π
d

π̂
d

Γ0.5

C0.5

β=0.5

0 500 1000 1500 2000 2500 3000

πM π̂M

0

500

1000

1500

2000

2500

3000

π
D

π̂
D

Γ1

C1

β=1

0 500 1000 1500 2000 2500 3000

πM π̂M

0

500

1000

1500

2000

2500

3000

π
D

π̂
D

π̂0
M

π̂1
M

β ∈ [0, 1]

FSP F Γβ Cβ (π̂βM , π̂
β
D)

15



Taking the probability of successful cartelization as exogenously given, we have shown that

increasing such probability does not make both sellers better off. This occurs for the monopolist M ,

but not always for the dependent seller: D would be only interested in sufficiently large β increases.

Even though in our economy the probability of successful cartelization is exogenously given, one

can consider that such a probability is linked to the effort needed to build a structure to guarantee

an effective communication and coordination among the members of the cartel. The relevance of

relying on an effective communication and organization system has been argued both by theoretical

papers and documented by empirical analysis. Our model predicts that when the probability of

cartelization is low enough then the expected profits of the dependent seller are lower than the

equilibrium non-cooperative ones. In this case the participation constraint of the dependent will

be violated. Therefore, he will have no incentive to put any effort to sustain a collusive outcome.

Alternatively, the dependent seller can boycott the attempt to establish any system of coordination

among sellers. Furthermore, in case communication is necessary to support collusion (as for instance

in Aubert et al., 2006) the dependent firm can whistle-blow any attempt to promote cartelization by

the monopolist. In this respect, our results are in line with empirical findings of, among the others,

Besley et al. (2021) and Block et al. (1981).
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A. Appendix to Section 2

A.1 Derivation of Equation (2)

To maximize the joint profits Σ(pM , pD) = πM (pM ) + πD(pM , pD), we have to solve

max Σ(pM , pD), s.t. γ − pM ⩾ 0, γ + αpM − pD ⩾ 0, pM , pD ⩾ 0. (A.1.1)

Recall that πM (pM ) = pM (γ −pM ) and πD = pD(γ +αpM −pD). Let ΣM (pM , pD) = γ −2pM +αpD

and ΣD(pM , pD) = γ − 2pD + αpM ; furthermore, let µM and µD be the multiplier associated to the
first and second constraint, respectively. The Kuhn-Tucker conditons are

ΣM (pM , pD) ⩽ µM − αµD, with equality if pM > 0 (A.1.2)

ΣD(pM , pD) ⩽ µD, with equality if pD > 0 (A.1.3)

µM (γ − pM ) = 0 (A.1.4)

µD(γ + αpM − pD) = 0 (A.1.5)

Since Σ(pM , pD) is a concave function, because its Hessian matrix is negative semidefinite, conditions
(A.1.2)–(A.1.5) are sufficient. To consider all the possible cases,19 we consider three scenarios:
Scenario (i): 0 ⩽ pM < γ and 0 ⩽ pD < γ + αpM

Scenario (ii): pM = γ and 0 ⩽ pD ⩽ γ + αγ
Scenario (iii): 0 ⩽ pM < γ and pD = γ + αpM

In scenario (i), (A.1.4) and (A.1.5) imply µM = 0 and µD = 0, respectively. Therefore, (A.1.2) and
(A.1.3) imply

γ − 2pM + αpD ⩽ 0, with equality if pM > 0 (A.1.6)

γ − 2pD + αpM ⩽ 0, with equality if pD > 0 (A.1.7)

Scenario (i) includes four cases:
Case (i.a): pM = 0 and pD = 0, which implies, via (A.1.6) or (A.1.7), γ ⩽ 0. However, this is not
possible because γ > 0 holds by assumption.
Case (i.b): 0 < pM < γ and pD = 0, which implies pM = γ/2 via (A.1.6), hence γ + α(γ/2) ⩽ 0
via (A.1.7). However, this implies 1 + α/2 ⩽ 0, which is not possible since −1 < α < 1 holds by
assumption.
Case (i.c): pM = 0 and 0 < pD < γ, which implies pD = γ/2 via (A.1.7), hence γ + α(γ/2) ⩽ 0 via
(A.1.6). However, as, in the previous case, this not possible.
Case (i.d): 0 < pM < γ and 0 < pD < γ + αpM , which implies, via (A.1.6) and (A.1.7), γ − 2pM +
αpD = 0 and γ − 2pD + αpM = 0. Solving the system gives pM = pD = γ/(2 − α).

Recall that, in scenario (ii), pM = γ and 0 ⩽ pD ⩽ γ + αγ hold, so that (A.1.4) implies µM ⩾ 0.
This scenario includes three cases:
Case (ii.a): pM = γ and pD = γ + αγ, which implies, via (A.1.2) and (A.1.3),

γ − 2γ + α(γ + αγ) = µM − αµD (A.1.8)

γ − 2(γ + αγ) + αγ = µD (A.1.9)

19The variables pM and pD can assume either an interior value or one boundary value (out of two). Therefore, there
are 32 = 9 cases altogether.

18



Substituting µD from (A.1.9) into (A.1.8) gives γ − 2γ + α(γ + αγ) + α [γ − 2(γ + αγ) + αγ] = µM .
Simplyfing the left side gives −γ = µM , which, however, is not possible, since γ > 0 holds by
assumption and, in this scenario, we have µM ⩾ 0.
Case (ii.b): pM = γ and pD = 0, which implies µD = 0 via (A.1.5), hence γ − 2γ = µM via (A.1.2).
However, as explained in the previous case, this is not possible.
Case (ii.c): pM = γ and 0 < pD < γ + αγ, which implies µD = 0 via (A.1.5), hence, via (A.1.2) and
(A.1.3),

γ − 2γ + αpD = µM (A.1.10)

γ − 2pD + αγ = 0 (A.1.11)

Substituting pD from (A.1.10) into (A.1.11) gives

α

(
γ + αγ

2

)
− γ = µM ,

hence (
γ

2

)(
α + α2 − 2

)
= µM

Since |α| < 1 by assumption, α2 < 1 holds, which implies α + α2 < α + 1 < 2 and, therefore,
α + α2 − 2 < 0. However, this is not possible, since in this scenario we have µM ⩾ 0.

Recall that, in scenario (iii), 0 ⩽ pM < γ and pD = γ + αpM hold, so that (A.1.4) implies µM = 0
and (A.1.5) implies µD ⩾ 0. This scenario includes two cases:
Case (iii.a): pM = 0 and pD = γ, which implies, via (A.1.3), γ − 2γ = µD. However, by the usual
argument, this is not possible.
Case (iii.b): 0 < pM < γ and pD = γ+αpM , which implies γ−2(γ+αpM )+αpM = −(γ+αpM ) = µD

via (A.1.3). However, this is not possible since −1 < α < 1 and 0 < pM < γ imply γ + αpM > 0.

Summing up, the only admissible case is (i.d), which corresponds to interior values of both variables
pM and pD. Therefore one has:

pJ
M = pJ

D = γ/(2 − α). (A.1.12)
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A.2 Derivation of Equation (3)

Given the prices pJ
M and pJ

D the maximal joint profits are equal to:

ΣJ = πM (pJ
M ) + πD(pJ

M , pJ
D)

=
(

γ − γ

2 − α

)
γ

2 − α
+
(

γ − γ

2 − α
+ α

γ

2 − α

)
γ

2 − α

=
(

2γ − 2
2 − α

γ + α

2 − α
γ

)
γ

2 − α

=
(4 − 2α − 2 + α

2 − α
γ

)
γ

2 − α

= 1
2 − α

γ2
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B. Appendix to Section 3

B.1 Derivation of Equation (9)

Best response of Seller M

The monopolist M chooses pM to maximize the expected profits

π̂M (pM , pD) =
(

1 − β

2

)
πM (pM ) +

(
β

2

)(
ΣJ − πD(pM , pD)

)
.

Since ΣJ is constant, maximizing the above function is equivalent to maximizing(
1 − β

2

)
πM (pM ) −

(
β

2

)
πD(pM , pD) =

(
1 − β

2

)(
γpM − p2

M

)
−
(

β

2

)(
γpD − p2

D + αpM pD

)
,

which, since pD is taken as given, is equivalent to maximizing(
1 − β

2

)(
γpM − p2

M

)
−
(

β

2

)
αpM pD. (B.1.1)

The above function can be rearranged as follows:[
γ − β

2 (γ + αpD)
]

pM −
(

1 − β

2

)
p2

M =
[(

1 − β

2

)
γ − β

2 αpD

]
pM −

(
1 − β

2

)
p2

M

=
[(2 − β

2

)
γ − β

2 αpD

]
pM −

(2 − β

2

)
p2

M

=
(2 − β

2

){[
γ −

(
β

2 − β

)
αpD

]
pM − p2

M

}
.

Therefore, letting β̂ = β/(2 − β), we see that maximizing (B.1.1) is equivalent to maximizing(
γ − β̂αpD

)
pM − p2

M . (B.1.2)

The problem of the monopolist M is, therefore, to choose pM to solve

max
pM

(
γ − β̂αpD

)
pM − p2

M ,

s.t. pM ⩾ 0, γ − pM ⩾ 0, γ + αpM − pD ⩾ 0.

In this problem, pD is taken as given, i.e., it varies parametrically; therefore, the analysis of the
problem should take into any arbitrary value of pD. However, since we are ultimately interested in
the equilibrium choices of M and D, we can, for sake of concreteness, limit ourselves, to the values of
pD which solve problem (B.1). By definition, these values satisfy the constraint γ + αpM − pD ⩾ 0,
which, therefore, can be disregarded.

Summing up, to derive the best response of the monopolist M we have to solve

max
pM

(
γ − β̂αpD

)
pM − p2

M s.t. pM ⩾ 0, γ − pM ⩾ 0. (B.1.3)

It is straightforward to verify that the objective function is concave; furthermore, it is easy to
verify that γ − β̂αpD > 0 whenever α ∈ (−1, 1). If α < 0, this follows from the fact that all the
other parameters are positive. If α > 0, the restriction α < 1 implies (1 + α)/2 < 1, and therefore,
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γ(1 + α)/2 < γ. For the values of pD given by (B.1.5) , 0 < pD ⩽ γ(1 + α)/2 will hold. Furthermore,
since β̂ ⩽ 1 implies β̂α < 1, it is true that

β̂αpD <
γ(1 + α)

2 < γ,

hence (γ − β̂αpD) > 0, as claimed. This implies that pM = 0 cannot be a solution to BRM for our
parameter constellations and the constraint pM ⩾ 0 will never be binding; therefore, this constraint
and its associated multiplier can be disregarded. Let λM ⩾ 0 denote the multiplier associated to
the constraint γ − pM ⩾ 0, so that the Kuhn-Tucker sufficient conditions are

(γ − β̂αpD) − 2pM = λM and λM (γ − pM ) = 0.

The boundary solution pM = γ would imply −β̂αpD − γ = λM ≥ 0. When considering α ∈ (0, 1) we
have −β̂αpD − γ < 0 which contradicts the fact that λM ≥ 0. When −1 < α ≤ 0 we can consider
the values of pD given by (B.1.5), 0 < pD ≤ γ(1 + α)/2. Hence, since α < 0 then β̂αγ(1 + α)/2 < γ.
Therefore, −β̂αpD − γ < 0 which contradicts the fact that λM ≥ 0. From the above analysis, we
can conclude that the solution to BRM implies λM = 0 and

p̂M (pD) = γ − β̂αpD

2 = γ

2 − βαpD

2(2 − β) . (B.1.4)

Best response of Seller D

The dependent seller D chooses pD to maximize the expected profits

π̂D(pM , pD) =
(

1 − β

2

)
πD(pM , pD) +

(
β

2

)(
ΣJ − πM (pM )

)
Since ΣJ is constant, πM (pM ) does not depend on pD, and 1−β/2 > 0, maximizing the above function
is equivalent to maximizing the (non-cooperative) profits πD(pM , pD). Therefore, taking pM as given,
the dependent firm D chooses pD to maximize the concave function πD(pM , pD) = (γ + αpM ) pD−p2

D.
To derive the best response pD(pM ) we have to solve

max
pD

(γ + αpM ) pD − p2
D s.t. pD ⩾ 0, γ + αpM − pD ⩾ 0.

Since we are ultimately interested in the equilibrium choices of M and D, we can, for sake of
concreteness, assume that pM satisfies 0 ⩽ pM ⩽ γ, since these restrictions will be imposed in
deriving the best response of the monopolist firm M . Together with the assumption −1 < α < 1,
this implies γ + αpM > 0. Therefore, pD = 0 cannot be a solution to BRD for our parameter
constellations and the constraint pD ⩾ 0 will never be binding; therefore, this constraint and its
associated multiplier can be disregarded. Let λD ⩾ 0 denote the multiplier associated to the
constraint γ + αpM − pD ⩾ 0, so that the Kuhn-Tucker sufficient conditions are

(γ + αpM ) − 2pD = λD and λD(γ + αpM − pD) = 0.

The boundary solution pD = γ + αpM would imply (γ + αpM )/2 = (γ + αpM ) + λD/2, hence

γ + αpM

2 ⩾ γ + αpM ,

which is not possible. Therefore, pD = γ + αpM cannot be a solution to BRD for our parameters
constellation. From the above analysis, we can conclude that the solution to BRD implies λD = 0
and

p̂D(pM ) = γ

2 + αpM

2 . (B.1.5)
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B.2 Derivation of Equation (10)

Given the best responses:

p̂M (pD) = γ

2 − αβpD

2(2 − β) and p̂D(pM ) = γ

2 + αpM

2 ,

we can substitute p̂D in the first equation and get:

pM (α, β) = γ

2 −
αβ

(
γ

2 + αpM (α, β)
2

)
2(2 − β) ⇔ pM (α, β) = γ

2 − αβγ

4(2 − β) − α2βpM (α, β)
4(2 − β)

Hence,

pM (α, β) = γ

(2(2 − β) − αβ

4(2 − β)

)
− α2βpM (α, β)

4(2 − β) =
(

4(2 − β) + α2β

4(2 − β)

)
= γ

(2(2 − β) − αβ

4(2 − β)

)

⇔ pM (α, β) = γ

( 2(2 − β) − αβ

4(2 − β) + α2β

)
⇔ pM (α, β) = γ

( 4 − (2 + α)β
8 − (4 − α2)β

)
(B.2.1)

By substituting pM (α, β) in p̂D(pM ) we have:

pD(α, β) = γ

2 + α

γ

( 4 − (2 + α)β
8 − (4 − α2)β

)
2

= γ
8 − (4 − α2)β + 4α − (2 + α)αβ]

2[8 − (4 − α2)β]

= γ
8 + 4α − (2α + α2 + 4 − α2)β

2[8 − (4 − α2)β]

= 2γ
2(2 + α) − (2 + α)β

2[8 − (4 − α2)β]

= γ
(2 + α)(2 − β)
8 − (4 − α2)β (B.2.2)
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B.3 Derivation of Equation (11)

Let us consider the difference between the two equilibrium prices:

pM (α, β) − pD(α, β) = γ [4 − (2 + α)β]
8 − (4 − α2)β − γ(2 + α)(2 − β)

8 − (4 − α2)β

= γ [4 − (2 + α)β]
8 − (4 − α2)β − γ[4 + 2α − (2 + α)β]

8 − (4 − α2)β

= − 2α

8 − (4 − α2)β (B.3.1)
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B.4 Derivation of Equation (13) and Equation (14)

Derivation Equation (13)

Regarding pM (α, β) one has:

∂pM (α, β)
∂β

= γ
−(2 + α)[8 − (4 − α2)β] + (4 − α2)[4 − (2 + α)β]

[8 − (4 − α2)β]2

= γ
−8(2 + α) + (4 − α2)(2 + α)β + 4(4 − α2) − (4 − α2)(2 + α)β

[8 − (4 − α2)β]2

= −4αγ(2 + α)
[8 − (4 − α2)β]2 (B.4.1)

Hence, ∂pM (α, β)/∂β depends on α, it is negative when α > 0 and positive when α < 0.

Derivation Equation (14)

Regarding pD(α, β) one has:

∂pD(α, β)
∂β

= ∂pβ
M

∂β
+ 2α(4 − α2)

[8 − (4 − α2)β]2 γ

= 4(−2α − α2) + (4 − α2)2α

[8 − (4 − α2)β]2 γ

= −2α2(2 + α)
[8 − (4 − α2)β]2 γ (B.4.2)

Hence, pD is decreasing in β regardless the sign of α.
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C. Appendix to Section 4

C.1 Derivation of Equation (15)

To save on notation, in this Appendix we write πM (α, β) for πM (pM (α, β)) and πD(α, β) for
πD(pM (α, β), pD(α, β)).

To compute S(α, β), we first compute πM (α, β) and πD(α, β) using pM (α, β) and pM (α, β). As for
πM (α, β), one has:

πM (α, β) = [γ − pM (α, β)]pM (α, β)

=
(

γ − γ
4 − (2 + α)β

[8 − (4 − α2)β]

)
γ

4 − (2 + α)β
[8 − (4 − α2)β]

= γ2[4 − (2 + α)β]
[8 − (4 − α2)β]2

(
8 − (4 − α2)β − 4 + (2 + α)β

)

= γ2[4 − (2 + α)β]
[8 − (4 − α2)β]2

(
4 − β(2 − α − α2)

)

= γ2 16 − 4β(4 − α2) + β2(4 − 3α2 − α3)
[8 − (4 − α2)β]2

As for πD(α, β), one has:

πD(α, β) = [γ − pD(α, β) + αpM (α, β)]pD(α, β)

=
[
γ − γ

(2 + α)(2 − β)
[8 − (4 − α2)β]2 + αγ

4 − (2 + α)β
[8 − (4 − α2)β]

]
γ

(2 + α)(2 − β)
[8 − (4 − α2)β]

= γ2 (2 + α)(2 − β)
[8 − (4 − α2)β]2 [8 − (2 − α)(2 + α)β − (2 + α)(2 − β) + 4α − α(2 + α)β]

= γ2 (2 + α)(2 − β)
[8 − (4 − α2)β]2 [8 − (2 − α)(2 + α)β − (2 − α)(2 − β) + 4α − α(2 + α)β]

= γ2 (2 + α)(2 − β)
[8 − (4 − α2)β]2 [4(2 + α) − 2(2 + α)β − (2 − α)(2 − β)]

= γ2 [(2 + α)(2 − β)]2

[8 − (4 − α2)β]2

= γ2 4(4 + 4α + α2) − 4β(4 + 4α + α2) + β2(4 + 4α + α2)
[8 − (4 − α2)β]2
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Hence one has:

πM (α, β) + πD(α, β) = γ2
[
4(8 + 4α + α2) − 4β(8 + 4α) + β2(8 + 4α − 2α2 − α3)

]
[8 − (4 − α2)β]2 (C.1.1)

We can now compute the surplus as follows:

S(α, β) = γ2

2 − α
− πM (α, β) − πD(α, β)

= γ2[8 − (4 − α2)β]2

(2 − α)[8 − (4 − α2)β]2 − πM (α, β) − πD(α, β)

= γ2[64 − 16(4 − a2)β + (4 − a2)2β2]
(2 − α)([8 − (4 − α2)β]2)

− γ2 (2 − α)
[
4(8 + 4α + α2) − 16β(2 + α) + β2(8 + 4α − 2α2 − α3)

]
(2 − α)[8 − (4 − α2)β]2

= γ2[64 − 16(4 − a2)β + (4 − a2)2β2]
(2 − α)([8 − (4 − α2)β]2)

− γ2
[
4(16 − 2α2 − α3) − 16β(4 − α2) + (2 − α)β2(8 + 4α − 2α2 − α3)

]
(2 − α)[8 − (4 − α2)β]2

= γ2[4(2α2 + α3) + (2 − a)β2((4 − α2)(2 + α) − 8 − 4α + 2α2 + α3)]
(2 − α)([8 − (4 − α2)β]2)

= γ2[4α2(2 + α) + (2 − a)β2((8 + 4α − 2α2 − α3) − 8 − 4α + 2α2 + α3)]
(2 − α)([8 − (4 − α2)β]2)

= (2 + α)(4α2γ2)
(2 − a)[8 − (4 − α2)β]2 .

Therefore it is immediate to verify that S(α, β) > 0 for evey α ∈ (−1, 1), with α ̸= 0.
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C.2 Derivation of Equation (17)

Let us compute ∂π∗
M (α, β)/∂β:

∂π∗
M (α, β)
∂β

= ∂πM (pM (α, β))
∂pM

∂pM (α, β)
∂β

+
(1

2

)
S(α, β) +

(
β

2

)
∂S(α, β)

∂β
. (C.2.1)

By direct computation, one has:

∂S(α, β)
∂β

= − ∂πM (pM (α, β))
∂pM

∂pM (α, β)
∂β

− ∂πD(pM (α, β), pD(α, β))
∂pM

∂pM (α, β)
∂β

− ∂πD(pM (α, β), pD(α, β))
∂pD

∂pD(α, β)
∂β

.

From the profit maximization of seller D it follows that:

∂πD(pM (α, β), pD(α, β))
∂pD

= 0,

and therefore one has:

∂S(α, β)
∂β

= −∂πM (pM (α, β))
∂pM

∂pM (α, β)
∂β

− ∂πD(pM (α, β), pD(α, β))
∂pM

∂pM (α, β)
∂β

, (C.2.2)

hence:

∂π∗
M (α, β)
∂β

=
(1

2

)
S(α, β)

+
[(

1 − β

2

)
∂πM (pM (α, β))

∂pM
−
(

β

2

)
∂πD(pM (α, β), pD(α, β))

∂pM

]
∂pM (α, β)

∂β
. (C.2.3)

From the profit maximization of seller M it follows that:(
1 − β

2

)
∂πM (pM (α, β))

∂pM
−
(

β

2

)
∂πD(pM (α, β), pD(α, β))

∂pM
= 0, (C.2.4)

so that finally one has:

∂π∗
M (α, β)
∂β

=
(1

2

)
S(α, β). (C.2.5)
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C.3 Derivation of Equation (18)

Let us compute ∂π̂∗
D(α, β)/∂β:

∂π̂∗
D(α, β)
∂β

= ∂πD(pM (α, β), pD(α, β))
∂pM

∂pM (α, β)
∂β

+ ∂πD(pM (α, β), pD(α, β))
∂pD

∂pD(α, β)
∂β

+
(1

2

)
S(α, β) +

(
β

2

)
∂S(α, β)

∂β
.

From the profit maximization of seller D it follows that:

∂πD(pM (α, β), pD(α, β))
∂pD

= 0.

Therefore, using (C.7.1) one has:

∂π∗
D(α, β)
∂β

=
(1

2

)
S(α, β)

+
[(

1 − β

2

)
∂πD(pM (α, β), pD(α, β))

∂pM
−
(

β

2

)
∂πM (pM (α, β))

∂pM

]
∂pM (α, β)

∂β
.

The crucial observation is that, differently from what happens for (C.2.3), one cannot claim that
the term in the square brackets is zero, since in this case the envelope argument does not apply.
However, from (C.2.4) one has:(

β

2

)
∂πM (pM (α, β))

∂pM
−
(

β

2

)
∂πD(pM (α, β), pD(α, β))

∂pM
= −∂πM (pM (α, β))

∂pM
.

so that one has:

∂π∗
D(α, β)
∂β

=
(1

2

)
S(α, β) +

[
∂πD(pM (α, β), pD(α, β))

∂pM
− ∂πM (pM (α, β))

∂pM

]
∂pM (α, β)

∂β
.

Morevover, from (C.2.1) and (C.2.5) it follows that:

−∂πM (pM (α, β), pD(α, β))
∂pM

∂pM (α, β)
∂β

=
(

β

2

)
∂S(α, β)

∂β
.

Furthermore, from (C.7.1) one also has:

∂πD(pM (α, β), pD(α, β))
∂pM

∂pM (α, β)
∂β

= −∂πM (pM (α, β))
∂pM

∂pM (α, β)
∂β

− ∂S(α, β)
∂β

=
(

β

2

)
∂S(α, β)

∂β
− ∂S(α, β)

∂β
.

Therefore finally one has:

∂π∗
D(pM (α, β), pD(α, β))

∂β
=
(1

2

)
S(α, β) +

[(
β

2

)
∂S(α, β)

∂β
− ∂S(α, β)

∂β
+
(

β

2

)
∂S(α, β)

∂β

]

=
(1

2

)
S(α, β) − (1 − β)∂S(α, β)

∂β
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C.4 Derivation of Equation (19)

By substituting the equilibrium prices pM (α, β) and pD(α, β) in (C.7.1), one has:

∂S(α, β)
∂β

= −
[
γ − 2γ [4 − (2 + α)β]

8 − (4 − α2)β + α
γ(2 + α)(2 − β)
8 − (4 − α2)β

]
∂pM (α, β)

∂β

= −γ

[
8 − (4 − α2)β − 8 + 2(2 + α)β + α(2 + α)(2 − β)

8 − (4 − α2)β

]
∂pM (α, β)

∂β

= −γ

[
−(4 − α2)β + (2 + α)β(2 − α) + 2α(2 + α)

8 − (4 − α2)β

]
∂pM (α, β)

∂β

= −γ

[−(2 − α)(2 + α)β + (2 + α)β(2 − α) + 2α(2 + α)
8 − (4 − α2)β

]
∂pM (α, β)

∂β

= −2γ

[
α(2 + α)

8 − (4 − α2)β

]
∂pM (α, β)

∂β

Recalling the result in ??, one verifies that −∂pM (α, β)/∂β has the same sign as α, and so does the
term in the square brakets. It follows that ∂S(α, β)/∂β > 0 for any α ∈ (−1, 1), with α ̸= 0.
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C.5 Proof of Proposition 1

Using the results from Appendix C.1 and Appendix C.4, one has:

∂π̂∗
D(α, β)
∂β

=
(1

2

)
S(α, β) − (1 − β)∂S(α, β)

∂β

=
(1

2

) (2 + α)(4α2γ2)
(2 − α)[8 − (4 − α2)β]2 − (1 − β)

[ −2γα(2 + α)
8 − (4 − α2)β

]
∂pM (α, β)

∂β

Furthermore, by direct computeation one has:

∂pM (α, β)
∂β

= γ
−(2 + α)[8 − (4 − α2)β] + (4 − α2)[4 − (2 + α)β]

[8 − (4 − α2)β]2

= γ
−8(2 + α) + (4 − α2)(2 + α)β + 4(4 − α2) − (4 − α2)(2 + α)β

[8 − (4 − α2)β]2

= −4αγ(2 + α)
[8 − (4 − α2)β]2

Therefore one has:

∂π∗
D(α, β)
∂β

=
(1

2

) (2 + α)(4α2γ2)
(2 − a)[8 − (4 − α2)β]2 − (1 − β)

[ −2αγ(2 + α)
8 − (4 − α2)β

] −4αγ(2 + α)
[8 − (4 − α2)β]2

= 2α2γ2(2 + α)
[8 − (4 − α2)β]2

[
8 − (4 − α2)β − 4(1 − β)(2 + α)(2 − α)

(2 − α)[8 − (4 − α2)β]

]

= 2α2γ2(2 + α)
[8 − (4 − α2)β]2

[
8 − (4 − α2)β − 4(1 − β)(4 − α2)

(2 − α)[8 − (4 − α2)β]

]

= 2α2γ2(2 + α)
[8 − (4 − α2)β]2

[
8 − (4 − α2)β − 4(4 − α2) + 4β4 − α2)

(2 − α)[8 − (4 − α2)β]

]

= 2α2γ2(2 + α)
[8 − (4 − α2)β]2

[
−4(2 − α2) + 3β(4 − α2)

(2 − α)[8 − (4 − α2)β]

]

The derivative is positive (negative) if the numerator of the term in square brackets is positive
(negative). By focusing on this term, one has:

−4(2 − α2) + 3β(4 − α2) ≥ 0 ⇔ β ≥ 4(2 − α2)
3(4 − α2) = β̄
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C.6 Derivation of Equation (21)

The equilibrium expected profits for β = 1 are equal to:

π̂∗
D(α, 1) = πD(pM (α, 1), pD(α, 1)) + 1

2S(α, 1)

= γ2(2 + α)2

[8 − (4 − α2)]2 + 1
2

4α2γ2(2 + α)
(2 − α)[8 − (4 − α2)]2

= γ2(2 + α)
[4 + α2]2

[
(2 − α)(2 + α) + 2α2

(2 − α)

]

= γ2(2 + α)(4 + a2)
(4 + α2)2(2 − α)

The non-cooperative profit of D is equal to:

π̂∗
D(α, 0) = πD

(
pM = γ

2 , pD = γ(2 + α)
2

)

=
(

γ − 1
4γ(2 + α) + α

γ

2

) 1
4γ(2 + α)

= 1
4γ(4 − (2 + α) + 2α)1

4γ(2 + α)

= 1
16γ2(2 + α)2

By comparing the equilibrium profits when β = 1 and β = 0 we get:

π̂∗
D(α, 1) − π̂∗

D(α, 0) = γ2(2 + α)(4 + a2)
(2 − α)(4 + α2)2 − (2 + α)2

16 γ2

= γ2(2 + α)
[

(4 + α2)
(2 − α)(4 + α2)2 − (2 + a)

16

]

= γ2(2 + α)
[ 1

(2 − α)(4 + α2) − (2 + a)
16

]

= γ2(2 + α)
[

16 − (4 − α2)(4 + α2)
16(2 − α)(4 + α2)

]

= γ2(2 + α)
[

16 − (16 − α4)
16(2 − α)(4 + α2)

]

= γ2(2 + α)
16(2 − α)(4 + α2)α4 > 0
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C.7 Equilibrium conflict profits as a function of β

For the derivative of the equilibrium prices with respect to β see Appendix B.4.

Seller M

Considering the market profits πM ,

∂πM (pM (α, β))
∂β

= ∂πM (pM (α, β))
∂pM

∂pM (α, β)
∂β

= [γ − 2pM (α, β)] ∂pβ
M

∂β

=
[
γ − 2γ[4 − (2 + α)β]

8 − (4 − α2)β

]
∂pβ

M

∂β

= γ

[
8 − (4 − α2)β − 8 + 2(2 + α)β

8 − (4 − α2)β

]
∂pβ

M

∂β

= γ

[
8 − (4 − α2)β − 8 + 2(2 + α)β

8 − (4 − α2)β

] [
− 4αγ(2 + α)

[8 − (4 − α2)β]2
]

=
[

α(2 + α)βγ

8 − (4 − α2)β

] [
− 4αγ(2 + α)

[8 − (4 − α2)β]2
]

= −
[

4α2γ2(2 + α)2β

[8 − (4 − α2)β]3

]
(C.7.1)

which is negative regardless of α. Therefore, πM (α, β) is decreasing regardless of α.

Seller D

Considering the market profits πD, one has:
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∂πD(pM (α, β), pD(α, β))
∂β

= ∂πD(pM (α, β), pD(α, β))
∂pM

∂pM (α, β)
∂β

+ ∂πD(pM (α, β), pD(α, β))
∂pD

∂pD(α, β)
∂β

= [αpD(α, β)]∂pM (α, β)
∂β

+ [γ − 2pD(α, β) + αpM (α, β)]∂pD(α, β)
∂β

=
[

αγ(2 + α)(2 − β)
[8 − (4 − α2)β]

]
∂pM (α, β)

∂β

+
[
γ − 2γ(2 + α)(2 − β)

[8 − (4 − α2)β] + αγ[4 − (2 + α)β]
[8 − (4 − α2)β]

]
∂pD(α, β)

∂β

=
[

αγ(2 + α)(2 − β)
[8 − (4 − α2)β]

] [
− 4αγ(2 + α)

[8 − (4 − α2)β]2
]

+
[
8 − (4 − α2)β − 4(2 + α) + 2(2 + α)β + 4α − α(2 + α)β]

] ∂pD(α, β)
∂β

= −
[

4α2γ2(2 + α)2(2 − β)
[8 − (4 − α2)β]3

]

+ [−(2 − α)(2 + α)β + (2 − α)(2 + α)β] ∂pD(α, β)
∂β

= −
[

4α2γ2(2 + α)2(2 − β)
[8 − (4 − α2)β]3

]
(C.7.2)

Therefore, this is negative regardless the sign of α.

Difference of the variations of the two conflict profits

The difference between the two derivative is:

∂πM (pM (α, β))
∂β

− ∂πD(pM (α, β), pD(α, β))
∂β

=
[

α(2 + α)βγ

8 − (4 − α2)β

]
∂pM (α, β)

∂β
−
[

αγ(2 + α)(2 − β)
[8 − (4 − α2)β]

]
∂pM

∂β

=
[

α(2 + α)γβ − αγ(2 + α)(2 − β)
8 − (4 − α2)β

]
∂pM

∂β

= −
[2α(2 + α)γ(1 − β)

8 − (4 − α2)β

] [
− 2α2γ(2 + α)

[8 − (4 − α2)β]2

]

= −
[

8α(2 + α)2γ2(1 − β)
[8 − (4 − α2)β]3

]
(C.7.3)
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Figure A.1: Variation of the equilibrium conflict profits as function of β
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which is always negative regardless α. As shown in the figure below the difference is negative but
increasing with β, meaning that the two values get closer as β approaches to 1.
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